Students’ perception of Kahoot!’s influence on teaching and learning – Research and Practice in Technology Enhanced Learning

Learning and instructional science research has established that gaining students’ attention and keeping them engaged in class is central to stimulating their learning, and low levels of attention span is linked to poor performance (Gagné 1985; Gagné and Driscoll 1988). Maintaining students’ attention and engagement can be difficult in Information Science lectures, which may not be conducive to establishing positive student-lecturer interactions and student participation. In addition, when students do not participate openly, this could be problematic given that motivation and engagement strongly influence learning and may be critical to academic success (Martin 2008; Pintrich and Schrauben 1992). Therefore, higher education institutions (including institutions in New Zealand) have started deploying learning technologies, such as GSRSs, to present lecture content in a novel manner, to encourage students to participate in class anonymously and to provide them with more meaningful revision methods (Licorish et al. 2017). Teachers and course coordinators integrate GSRSs into lectures with a view to enhance student motivation, engagement and in turn deeper learning. Beyond such interventions, with maturity in learning technologies, mobile and ubiquitous devices are becoming widespread in contemporary classroom settings and are being integrated into many aspects of classroom teaching to encourage students’ engagement, motivation and learning (e.g. Brandford-Networks 2013).

Over the last decade, there has been an increasing use of game-based student response systems (GSRSs) to support attention, motivation and engagement. However, there remained a conflict in previous research as to whether GSRSs, namely Kahoot!, improved student learning and retention. Thus, there was a need for a qualitative exploration of students’ learning experiences using Kahoot!, particularly in the domain of Information Science at the university level. The current study explored how the integration of GSRSs and Kahoot! contributed to students’ motivation, engagement and learning in the domain of Information Science, shedding light on how and when Kahoot! has a positive impact on students’ learning experiences. We revisit our outcomes to answer our four research questions in this section and outline potential implications for research and practice. We first answer the research questions and discuss the outcomes in relation to previous works in the “Discussion” section. Next, we consider the limitations of the work in the “Limitations” section. Finally, we evaluate the implications of the analysis in the “Implications and future work” section, and also outline avenues for future research.

Discussion

RQ1. How does Kahoot! influence classroom dynamics?

We observed that Kahoot! gave students more opportunities to engage with the lecturer, peers and lecture content. It also helped in creating a learning experience that was described as “fun”, which contributed to useful classroom engagement dynamics. This was a particularly different learning experience to the traditional “chalk and talk” method that students have been exposed to in other courses (e.g. Graham 2015; Roehl et al. 2013). The findings substantiate previous research in supporting the use of Kahoot! in fostering our understanding of classroom dynamics, enhanced lecturer-student engagement, and more constructive discussions with peers (Plump and LaRosa 2017; Wang 2015). When students are engaged, they exhibit curiosity in the learning content and maintain focus during class sessions. Consistent with Wang (2015), findings from our study suggested that maintaining anonymity is critical for facilitating engagement among students who might not be actively participating in classroom discussions. Findings also suggested that the employment of Kahoot! led to excessive competition among students and to some extent, invoked negative feelings. That said, notwithstanding such feelings, we observed that the desire to perform resulted in increased learning (or knowledge acquisition). While Kahoot! is known as a great tool for doing revision before formal assessments, it is interesting to know that this tool may also promote class discussion after the game, which may ultimately enhance students’ ability to remember concepts at a later stage. Thus, beyond increased engagement and a shift in classroom dynamics, the drive to perform, and ultimately increase learning are positive effects of Kahoot! use during lectures.

RQ2. Does the use of Kahoot! influence students’ engagement, and how?

Students felt that Kahoot! captured their focus (or attention) and interest during the course but was also timely for allowing breaks. This was particularly necessary for reflection on lectures and class discussion, especially in lectures that were longer than 1 h. In the same vein, the need to be attentive to perform well in Kahoot! helped students to maintain interest in the lessons during lectures. Their willingness to perform was also influenced by the level of anonymity afforded by Kahoot!, which allowed students to remain focussed on comparing the content of Kahoot!s and differences of opinion, rather than comparing other students’ aptitudes. Consistent with Experiential Gaming Model (Kiili 2005), these findings further emphasise the importance of GSRSs, like games, for generation and testing of ideas during problem-solving, monitoring one’s knowledge through feedback and discussion, and encoding and storing this knowledge for future use (e.g. Ke 2009; Papastergiou 2009). These findings also somewhat contradict the idea that students only learn through trial and error when using GSRSs (Kiili 2005). In fact, our findings show that in view of exploring answers to questions and understanding why they were right or wrong, students generated a deeper understanding that strongly aided their engagement and ability to remember. This outcome is interesting, in that there is indication that in-depth learning results from the discussion after playing Kahoot!; even after the game is over. To this end, the design of questions for the Kahoot! game and subsequent discussions are likely to be integral to in-depth learning. Thus, the instructor’s design of questions and his/her skills in leading discussions are important factors in getting the most values out of an online tool like Kahoot!. While the game is likely to provide an atmosphere that would lead to potentially more relaxed and attentive students, similar learning may also result in the absence of Kahoot! if the instructor thrust is towards this cause. Students’ reports of the importance of the post-Kahoot! discussion is consistent with findings from previous “blended learning” interventions (i.e. e-learning and teacher instructions) which indicate that autonomous, student-driven online learning is more effective when staff members interact with students regularly using the platform and provide prompt, detailed and summative feedback (Poon 2013; Yen and Lee 2011).

RQ3. In what ways does the use of Kahoot! influence students’ motivation towards learning?

Our outcomes show that Kahoot! motivated students to be engaged, and encourage interaction in the classroom (both student-student and student-lecturer). Students were motivated to be attentive on the backdrop that they wanted to perform well in Kahoot!s. This in turn motivated students to engage with the lecturer, peers and lecture content. Kahoot! also motivated competition in the classroom, where students were driven to see their names at the top of the leader board, and thus, were more attentive during lectures and related discussions. These effects of enhanced attention and “healthy” competition are consistent with Wang’s (2015) findings.

However, we observed that students drive to perform well in Kahoot! and the use of inappropriate names could invoke negative feelings towards the tool and increase distraction. Furthermore, Kahoot!s involving guessing do not maintain students’ motivation towards learning, as students perceive these to target fun. However, third year university students are eager to focus on subject-relevant content, and so, find little value in content delivered that is off topic. If instructors want to incorporate Kahoot! in their lectures, they might want to minimise these negative effects. For instance, teachers could reduce the length of Kahoot! sessions but devote more time to the post-Kahoot! discussion of the answers and the problem-solving strategies taken to achieve the correct answers. Teachers should also achieve a balance between testing students on new versus recently acquired content to maintain their attention, and maximise Kahoot!’s effectiveness as a learning tool.

RQ4. How does the use of Kahoot! enrich learning experiences?

Student conceded that Kahoot!s’ use in the course had a positive impact on the knowledge and skills they attained. Students noted that the drive to increase their attention and interaction strongly supported their learning in the course. This supports previously documented positive effects of GSRS use on learning (Ismail and Mohammad 2017; Méndez and Slisko 2013; Plump and LaRosa 2017) and is consistent with Novak’s (1998) model of meaningful learning. Lecturers are responsible for establishing an environment in which deep learning (relating course information to everyday behaviours and their own experiences) occurs through Kahoot! use, thus providing students with the tools to adopt these learning strategies in their assessment and study. Indeed, when students did not perform well in Kahoot!s, those specific Kahoot!s were used to drive revision efforts, in view of overcoming learning deficiencies. In addition, Kahoot! offered students the opportunity to focus on specific relevant content, when a large amount of materials were delivered in lectures, which, again, is consistent with Wang’s (2015) findings. However, as student assessment approaches, Kahoot! may play more of a supporting role in the revision process as students may focus more on studying lecture content than interacting with other students and the lecturer. Kahoot! not only increases learning and the desire to remember lecture content during revision, but increases knowledge retention over the course of the lecture, i.e. students report that learning took place between Kahoot! and the discussion that followed. Having the teacher explain the theory and reasoning behind the correct answers meant that the information was more strongly encoded in long-term memory. Thus, students may not require additional revision to remember and correctly report relevant content during assessments.

Limitations

While we have provided a number of insights in this work, we acknowledge that there are a number of shortcomings that may potentially affect the validity and generalizability of our study outcomes. Firstly, our sample is relatively small, and thus, our outcomes may not generalise to all lecture environments. That said, given the theoretical saturation observed for the themes revealed in this study, we believe that our outcomes may generalise to third year Information Science university students. Second, the students’ perceptions around the use of Kahoot! may be influenced by their background, and thus, this is to be considered when interpreting our findings. Third, Kahoot! was used in four (4) different ways during seven (7) different lectures by staff, with a duration of about 30 min on average. Students also designed and played a further nine Kahoot!s. Such use of Kahoot! may not represent all possible scenarios, and thus, students’ perception may vary given other experiences with the tool. That said, we have carefully considered how Kahoot! was used with a view of stimulating classroom dynamics, students’ engagement and motivation, and ultimately, their learning, and so we believe our approach to the use of this tool was exhaustive. Finally, since the study was qualitative in nature, it is limited in its generalizability to other settings, beyond the lessons learned. Future work will focus on deploying Kahoot! with a large number of students and different subjects and assess students’ experience while learning in this environment.

Implications and future work

On balance, Kahoot!s with the highest impact on classroom dynamics, student engagement, motivation and learning seems to be those that focussed on relevant course topics, and where there is little use of excessively distracting names and students’ behaviours. In fact, consistent with Papastergiou’s (2009) findings, students noted that Kahoot! improved classroom dynamics, engagement, motivation and learning beyond what would be expected from traditional teaching methods (e.g. normal PowerPoint slides and chalk and talk). However, we were not able to quantitatively examine such differences with the data collected; we hope to do so in future work. The themes identified support the previous studies that have found a positive effect of GSRSs on, for instance, classroom dynamics, motivation, social interaction, attention, (Méndez and Slisko 2013), willingness to prepare for class and learning (Plump and LaRosa 2017; Wang 2015; Wang and Lieberoth 2016).

This confirmation suggests that Kahoot!, and the use of games and gamification in general, have a positive influence on classroom dynamics, students’ engagement and motivation, and ultimately, their learning. While our evidence here is positive for informing pedagogy, and particularly in terms of identifying the suitable contexts for which the use of games and gamification are beneficial, challenges are still likely to remain in terms of the time needed to learn and setup these technologies, creating appropriate content, and providing students with useful and timely feedback. Indeed, time constraints for Kahoot! sessions in lectures were reflected in some of the negative feedback from students, who felt that the recreational use of Kahoot! restricted content coverage and wasted valuable lecture time. Therefore, it is important for teachers to carefully structure lectures so that Kahoot! time is appropriately allocated. Educators are thus encouraged to balance these challenges in introducing game-play sustainably, particularly in light of the potential benefits that could be derived through the use of games during learning sessions.

In terms of our methodological contributions in this work, this study attempted to show rigour by employing a systematic procedure for data coding and thematic extraction that researchers can follow in the future (Cope 2014). The findings of this study also reflect high transferability and auditability (Daniel 2018), as the lessons learned from this work can be useful in similar GSRSs contexts (e.g. Socrative, Quizlet and Buzz!) and can be successfully implemented into university lectures in the future. From an applied perspective, and particularly towards improving lecture practice, the results of the present study also provide guidelines as to when and for how long Kahoot! can be a useful learning tool.

Our future research will involve a large-scale deployment of Kahoot! to examine the efficacy of this tool in enhancing student learning outcomes, using quasi-experimental design as well as exploring the experiences of teachers in using Kahoot! in enhancing their teaching effectiveness. We also plan to administer a web-based survey to gather quantitative evidence to triangulate our outcomes, and particularly those around the specific aspects of GSRSs that contribute to the enrichment of learning over the use of the “chalkboard” or “PowerPoint slides”. Furthermore, there is scope to correlate our outcomes with those provided by learning analytics tools.

Xổ số miền Bắc