Macromolecular modeling and design in Rosetta: recent methods and frameworks | Nature Methods

  1. Chemical Computing Group. Molecular Operating Environment (MOE) | MOEsaic | PSILO. https://www.chemcomp.com/Products.htm (2020).

  2. Dassault Systèmes. BIOVIA, Discovery Studio Modeling Environment, release 2017. https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/ (2016).

  3. Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).

  4. Vu, O., Mendenhall, J., Altarawy, D. & Meiler, J. BCL:Mol2D-a robust atom environment descriptor for QSAR modeling and lead optimization. J. Comput. Aided Mol. Des. 33, 477–486 (2019).

  5. Webb, B. et al. Integrative structure modeling with the Integrative Modeling Platform. Protein Sci. 27, 245–258 (2018).

  6. O’Boyle, N. M. et al. Open Babel: an open chemical toolbox. J. Cheminform. 3, 33 (2011).

  7. Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).

  8. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

  9. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

  10. Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol. 13, e1005659 (2017).

  11. Senior, A. W. et al. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins 87, 1141–1148 (2019).

  12. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

  13. Zheng, W. et al. Deep-learning contact-map guided protein structure prediction in CASP13. Proteins 87, 1149–1164 (2019).

  14. Xu, J. & Wang, S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins 87, 1069–1081 (2019).

  15. Fiser, A. & Sali, A. Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 374, 461–491 (2003).

  16. Bienert, S. et al. The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Res. 45 D1, D313–D319 (2017).

  17. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

  18. van Zundert, G. C. P. et al. The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720–725 (2016).

  19. Pierce, B. G. et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30, 1771–1773 (2014).

  20. Padhorny, D. et al. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Proc. Natl Acad. Sci. USA 113, E4286–E4293 (2016).

  21. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

  22. BioSolveIT GmbH. FlexX version 4.1. http://www.biosolveit.de/FlexX (2019).

  23. Tubert-Brohman, I., Sherman, W., Repasky, M. & Beuming, T. Improved docking of polypeptides with Glide. J. Chem. Inf. Model. 53, 1689–1699 (2013).

  24. Sorenson, J. M. & Head-Gordon, T. Matching simulation and experiment: a new simplified model for simulating protein folding. J. Comput. Biol. 7, 469–481 (2000).

  25. Koehler Leman, J. et al. Better together: Elements of successful scientific software development in a distributed collaborative community. PLoS Comput. Biol. 16, e1007507 (2020).

  26. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

  27. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

  28. Park, H. et al. Simultaneous optimization of biomolecular energy functions on features from small molecules and macromolecules. J. Chem. Theory Comput. 12, 6201–6212 (2016).

  29. Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).

  30. Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 6, e20161 (2011).

  31. Cooper, S. et al. Predicting protein structures with a multiplayer online game. Nature 466, 756–760 (2010).

  32. Bender, B. J. et al. Protocols for molecular modeling with Rosetta3 and RosettaScripts. Biochemistry https://doi.org/10.1021/acs.biochem.6b00444 (2016).

  33. Simoncini, D. et al. Guaranteed discrete energy optimization on large protein design problems. J. Chem. Theory Comput. 11, 5980–5989 (2015).

  34. Leaver-Fay, A. et al. Scientific benchmarks for guiding macromolecular energy function improvement. Methods Enzymol. 523, 109–143 (2013).

  35. Jorgensen, W. L., Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

  36. Radzicka, A. & Wolfenden, R. Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution. Biochemistry 27, 1664–1670 (1988).

  37. O’Meara, M. J. et al. Combined covalent-electrostatic model of hydrogen bonding improves structure prediction with Rosetta. J. Chem. Theory Comput. 11, 609–622 (2015).

  38. Conway, P., Tyka, M. D., DiMaio, F., Konerding, D. E. & Baker, D. Relaxation of backbone bond geometry improves protein energy landscape modeling. Protein Sci. 23, 47–55 (2014).

  39. Park, H., Lee, H. & Seok, C. High-resolution protein-protein docking by global optimization: recent advances and future challenges. Curr. Opin. Struct. Biol. 35, 24–31 (2015).

  40. Kellogg, E. H., Leaver-Fay, A. & Baker, D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 79, 830–838 (2011).

  41. Mills, J. H. et al. Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy. J. Am. Chem. Soc. 135, 13393–13399 (2013).

  42. Kappel, K. et al. Blind tests of RNA-protein binding affinity prediction. Proc. Natl Acad. Sci. USA 116, 8336–8341 (2019).

  43. Bhardwaj, G. et al. Accurate de novo design of hyperstable constrained peptides. Nature 538, 329–335 (2016).

  44. Hosseinzadeh, P. et al. Comprehensive computational design of ordered peptide macrocycles. Science 358, 1461–1466 (2017).

  45. Leaver-Fay, A., Butterfoss, G. L., Snoeyink, J. & Kuhlman, B. Maintaining solvent accessible surface area under rotamer substitution for protein design. J. Comput. Chem. 28, 1336–1341 (2007).

  46. Boyken, S. E. et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352, 680–687 (2016).

  47. Lu, P. et al. Accurate computational design of multipass transmembrane proteins. Science 359, 1042–1046 (2018).

  48. Chen, Z. et al. Programmable design of orthogonal protein heterodimers. Nature 565, 106–111 (2019).

  49. Maguire, J. B., Boyken, S. E., Baker, D. & Kuhlman, B. Rapid sampling of hydrogen bond networks for computational protein design. J. Chem. Theory Comput. 14, 2751–2760 (2018).

  50. Pavlovicz, R.E., Park, H. & DiMaio, F. Efficient consideration of coordinated water molecules improves computational protein-protein and protein-ligand docking. Preprint at bioRxiv https://doi.org/10.1101/618603 (2019).

  51. Bhowmick, A., Sharma, S. C., Honma, H. & Head-Gordon, T. The role of side chain entropy and mutual information for improving the de novo design of Kemp eliminases KE07 and KE70. Phys. Chem. Chem. Phys. 18, 19386–19396 (2016).

  52. König, R. & Dandekar, T. Solvent entropy-driven searching for protein modeling examined and tested in simplified models. Protein Eng. 14, 329–335 (2001).

  53. Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. & Moult, J. Critical assessment of methods of protein structure prediction (CASP)—round XIII. Proteins https://doi.org/10.1002/prot.25823 (2019).

  54. Song, Y. et al. High-resolution comparative modeling with RosettaCM. Structure 21, 1735–1742 (2013).

  55. Park, H., Kim, D. E., Ovchinnikov, S., Baker, D. & DiMaio, F. Automatic structure prediction of oligomeric assemblies using Robetta in CASP12. Proteins 86(Suppl. 1), 283–291 (2018).

  56. Kamisetty, H., Ovchinnikov, S. & Baker, D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Proc. Natl Acad. Sci. USA 110, 15674–15679 (2013).

  57. Ovchinnikov, S. et al. Protein structure determination using metagenome sequence data. Science 355, 294–298 (2017).

  58. Park, H., Ovchinnikov, S., Kim, D. E., DiMaio, F. & Baker, D. Protein homology model refinement by large-scale energy optimization. Proc. Natl Acad. Sci. USA 115, 3054–3059 (2018).

  59. Tyka, M. D. et al. Alternate states of proteins revealed by detailed energy landscape mapping. J. Mol. Biol. 405, 607–618 (2011).

  60. Friedland, G. D., Linares, A. J., Smith, C. A. & Kortemme, T. A simple model of backbone flexibility improves modeling of side-chain conformational variability. J. Mol. Biol. 380, 757–774 (2008).

  61. Kapp, G. T. et al. Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair. Proc. Natl Acad. Sci. USA 109, 5277–5282 (2012).

  62. Stein, A. & Kortemme, T. Improvements to robotics-inspired conformational sampling in rosetta. PLoS One 8, e63090 (2013).

  63. Lin, M. S. & Head-Gordon, T. Improved energy selection of nativelike protein loops from loop decoys. J. Chem. Theory Comput. 4, 515–521 (2008).

  64. Rohl, C. A., Strauss, C. E. M., Chivian, D. & Baker, D. Modeling structurally variable regions in homologous proteins with rosetta. Proteins 55, 656–677 (2004).

  65. Wang, C., Bradley, P. & Baker, D. Protein-protein docking with backbone flexibility. J. Mol. Biol. 373, 503–519 (2007).

  66. Canutescu, A. A. & Dunbrack, R. L. Jr. Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci. 12, 963–972 (2003).

  67. Mandell, D. J., Coutsias, E. A. & Kortemme, T. Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat. Methods 6, 551–552 (2009).

  68. Mandell, D. J. & Kortemme, T. Backbone flexibility in computational protein design. Curr. Opin. Biotechnol. 20, 420–428 (2009).

  69. Marze, N. A., Roy Burman, S. S., Sheffler, W. & Gray, J. J. Efficient flexible backbone protein-protein docking for challenging targets. Bioinformatics 34, 3461–3469 (2018).

  70. Roy Burman, S. S., Yovanno, R. A. & Gray, J. J. Flexible backbone assembly and refinement of symmetrical homomeric complexes. Structure 27, 1041–1051.e8 (2019).

  71. DiMaio, F., Leaver-Fay, A., Bradley, P., Baker, D. & André, I. Modeling symmetric macromolecular structures in Rosetta3. PLoS One 6, e20450 (2011).

  72. Meiler, J. & Baker, D. ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65, 538–548 (2006).

  73. Fu, D. Y. & Meiler, J. Predictive power of different types of experimental restraints in small molecule docking: a review. J. Chem. Inf. Model. 58, 225–233 (2018).

  74. Fu, D. Y. & Meiler, J. RosettaLigandEnsemble: a small-molecule ensemble-driven docking approach. ACS Omega 3, 3655–3664 (2018).

  75. Johnson, D. K. & Karanicolas, J. Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface. PLoS Comput. Biol. 9, e1002951 (2013).

  76. Johnson, D. K. & Karanicolas, J. Selectivity by small-molecule inhibitors of protein interactions can be driven by protein surface fluctuations. PLoS Comput. Biol. 11, e1004081 (2015).

  77. Johnson, D. K. & Karanicolas, J. Ultra-high-throughput structure-based virtual screening for small-molecule inhibitors of protein-protein interactions. J. Chem. Inf. Model. 56, 399–411 (2016).

  78. Sircar, A., Kim, E. T. & Gray, J. J. RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res. 37, W474–W479 (2009).

  79. Weitzner, B. D., Kuroda, D., Marze, N., Xu, J. & Gray, J. J. Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization. Proteins 82, 1611–1623 (2014).

  80. Weitzner, B. D. et al. Modeling and docking of antibody structures with Rosetta. Nat. Protoc. 12, 401–416 (2017).

  81. Sivasubramanian, A., Sircar, A., Chaudhury, S. & Gray, J. J. Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins 74, 497–514 (2009).

  82. Marze, N. A., Lyskov, S. & Gray, J. J. Improved prediction of antibody VL-VH orientation. Protein Eng. Des. Sel. 29, 409–418 (2016).

  83. Finn, J. A. et al. Improving loop modeling of the antibody complementarity-determining region 3 using knowledge-based restraints. PLoS One 11, e0154811 (2016).

  84. Weitzner, B. D. & Gray, J. J. Accurate structure prediction of CDR H3 loops enabled by a novel structure-based C-terminal constraint. J. Immunol. 198, 505–515 (2017).

  85. DeKosky, B. J. et al. Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc. Natl Acad. Sci. USA 113, E2636–E2645 (2016).

  86. Jeliazkov, J. R. et al. Repertoire analysis of antibody CDR-H3 loops suggests affinity maturation does not typically result in rigidification. Front. Immunol. 9, 413 (2018).

  87. Norn, C. H., Lapidoth, G. & Fleishman, S. J. High-accuracy modeling of antibody structures by a search for minimum-energy recombination of backbone fragments. Proteins 85, 30–38 (2017).

  88. Lapidoth, G., Parker, J., Prilusky, J. & Fleishman, S. J. AbPredict 2: a server for accurate and unstrained structure prediction of antibody variable domains. Bioinformatics 35, 1591–1593 (2019).

  89. Sircar, A. & Gray, J. J. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Comput. Biol. 6, e1000644 (2010).

  90. Sircar, A., Sanni, K. A., Shi, J. & Gray, J. J. Analysis and modeling of the variable region of camelid single-domain antibodies. J. Immunol. 186, 6357–6367 (2011).

  91. Adolf-Bryfogle, J. et al. RosettaAntibodyDesign (RAbD): a general framework for computational antibody design. PLoS Comput. Biol. 14, e1006112 (2018).

  92. North, B., Lehmann, A. & Dunbrack, R. L. Jr. A new clustering of antibody CDR loop conformations. J. Mol. Biol. 406, 228–256 (2011).

  93. King, C. et al. Removing T-cell epitopes with computational protein design. Proc. Natl Acad. Sci. USA 111, 8577–8582 (2014).

  94. Nivón, L. G., Bjelic, S., King, C. & Baker, D. Automating human intuition for protein design. Proteins 82, 858–866 (2014).

  95. Lapidoth, G. D. et al. AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins 83, 1385–1406 (2015).

  96. Baran, D. et al. Principles for computational design of binding antibodies. Proc. Natl Acad. Sci. USA 114, 10900–10905 (2017).

  97. Vaissier Welborn, V. & Head-Gordon, T. Computational design of synthetic enzymes. Chem. Rev. 119, 6613–6630 (2019).

  98. Marcos, E. & Silva, D.-A. Essentials of de novo protein design: methods and applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1374 (2018).

  99. Marcos, E. et al. Principles for designing proteins with cavities formed by curved β sheets. Science 355, 201–206 (2017).

  100. Zhou, J., Panaitiu, A. E. & Grigoryan, G. A general-purpose protein design framework based on mining sequence-structure relationships in known protein structures. Proc. Natl Acad. Sci. USA 117, 1059–1068 (2020).

  101. Jacobs, T. M. et al. Design of structurally distinct proteins using strategies inspired by evolution. Science 352, 687–690 (2016).

  102. Guffy, S. L., Teets, F. D., Langlois, M. I. & Kuhlman, B. Protocols for requirement-driven protein design in the Rosetta modeling program. J. Chem. Inf. Model. 58, 895–901 (2018).

  103. Lapidoth, G. et al. Highly active enzymes by automated combinatorial backbone assembly and sequence design. Nat. Commun. 9, 2780 (2018).

  104. Huang, P.-S. et al. RosettaRemodel: a generalized framework for flexible backbone protein design. PLoS One 6, e24109 (2011).

  105. Leaver-Fay, A., Jacak, R., Stranges, P. B. & Kuhlman, B. A generic program for multistate protein design. PLoS One 6, e20937 (2011).

  106. Sevy, A. M., Jacobs, T. M., Crowe, J. E. Jr. & Meiler, J. Design of protein multi-specificity using an independent sequence search reduces the barrier to low energy sequences. PLoS Comput. Biol. 11, e1004300 (2015).

  107. Sevy, A. M. et al. Multistate design of influenza antibodies improves affinity and breadth against seasonal viruses. Proc. Natl Acad. Sci. USA 116, 1597–1602 (2019).

  108. Sauer, M. F., Sevy, A. M., Crowe, J. E. & Meiler, J. Multi-state design of flexible proteins predicts sequences optimal for conformational change. PLoS Comput. Biol. 16, e1007339 (2020).

  109. Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).

  110. Bonet, J. et al. Rosetta FunFolDes — a general framework for the computational design of functional proteins. PLoS Comput. Biol. 14, e1006623 (2018).

  111. Kroncke, B. M. et al. Documentation of an imperative to improve methods for predicting membrane protein stability. Biochemistry 55, 5002–5009 (2016).

  112. Kortemme, T. & Baker, D. A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl Acad. Sci. USA 99, 14116–14121 (2002).

  113. Kortemme, T., Kim, D. E. & Baker, D. Computational alanine scanning of protein-protein interfaces. Sci. STKE 2004, pl2 (2004).

  114. Conchúir, Ó. et al. Web resource for standardized benchmark datasets, metrics, and Rosetta protocols for macromolecular modeling and design. PLoS One 10, e0130433 (2015).

  115. Barlow, K. A. et al. Flex ddG: Rosetta ensemble-based estimation of changes in protein-protein binding affinity upon mutation. J. Phys. Chem. B 122, 5389–5399 (2018).

  116. Smith, C. A. & Kortemme, T. Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction. J. Mol. Biol. 380, 742–756 (2008).

  117. Crick, F. H. C. The Fourier transform of a coiled-coil. Acta Crystallogr. 6, 685–689 (1953).

  118. Dang, B. et al. De novo design of covalently constrained mesosize protein scaffolds with unique tertiary structures. Proc. Natl Acad. Sci. USA 114, 10852–10857 (2017).

  119. Alam, N. et al. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLoS Comput. Biol. 13, e1005905 (2017).

  120. Kozakov, D., Brenke, R., Comeau, S. R. & Vajda, S. PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65, 392–406 (2006).

  121. Raveh, B., London, N. & Schueler-Furman, O. Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78, 2029–2040 (2010).

  122. Pacella, M. S., Koo, C. E., Thottungal, R. A. & Gray, J. J. Using the RosettaSurface algorithm to predict protein structure at mineral surfaces. Methods Enzymol. 532, 343–366 (2013).

  123. Lubin, J. H., Pacella, M. S. & Gray, J. J. A parametric Rosetta energy function analysis with LK peptides on SAM surfaces. Langmuir 34, 5279–5289 (2018).

  124. Frenz, B., Walls, A. C., Egelman, E. H., Veesler, D. & DiMaio, F. RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps. Nat. Methods 14, 797–800 (2017).

  125. Wang, R. Y.-R. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).

  126. Labonte, J. W., Adolf-Bryfogle, J., Schief, W. R. & Gray, J. J. Residue-centric modeling and design of saccharide and glycoconjugate structures. J. Comput. Chem. 38, 276–287 (2017).

  127. Frenz, B. et al. Automatically fixing errors in glycoprotein structures with Rosetta. Structure 27, 134–139.e3 (2019).

  128. Nerli, S. & Sgourakis, N. G. CS-ROSETTA. Methods Enzymol. 614, 321–362 (2019).

  129. Rohl, C. A. & Baker, D. De novo determination of protein backbone structure from residual dipolar couplings using Rosetta. J. Am. Chem. Soc. 124, 2723–2729 (2002).

  130. Yagi, H. et al. Three-dimensional protein fold determination from backbone amide pseudocontact shifts generated by lanthanide tags at multiple sites. Structure 21, 883–890 (2013).

  131. Schmitz, C., Vernon, R., Otting, G., Baker, D. & Huber, T. Protein structure determination from pseudocontact shifts using ROSETTA. J. Mol. Biol. 416, 668–677 (2012).

  132. Pilla, K. B., Otting, G. & Huber, T. Pseudocontact shift-driven iterative resampling for 3d structure determinations of large proteins. J. Mol. Biol. 428, 522–532 (2016). 2 Pt B.

  133. Lange, O. F. & Baker, D. Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. Proteins 80, 884–895 (2012).

  134. Bowers, P. M., Strauss, C. E. M. & Baker, D. De novo protein structure determination using sparse NMR data. J. Biomol. NMR 18, 311–318 (2000).

  135. Meiler, J. & Baker, D. Rapid protein fold determination using unassigned NMR data. Proc. Natl Acad. Sci. USA 100, 15404–15409 (2003).

  136. Raman, S. et al. NMR structure determination for larger proteins using backbone-only data. Science 327, 1014–1018 (2010).

  137. Lange, O. F. et al. Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc. Natl Acad. Sci. USA 109, 10873–10878 (2012).

  138. Reichel, K. et al. Systematic evaluation of CS-Rosetta for membrane protein structure prediction with sparse NOE restraints. Proteins 85, 812–826 (2017).

  139. Sgourakis, N. G. et al. Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings. J. Am. Chem. Soc. 133, 6288–6298 (2011).

  140. Rossi, P. et al. A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta. Proteins 83, 309–317 (2015).

  141. Demers, J.-P. et al. High-resolution structure of the Shigella type-III secretion needle by solid-state NMR and cryo-electron microscopy. Nat. Commun. 5, 4976 (2014).

  142. Thompson, J. M. et al. Accurate protein structure modeling using sparse NMR data and homologous structure information. Proc. Natl Acad. Sci. USA 109, 9875–9880 (2012).

  143. Braun, T., Koehler Leman, J. & Lange, O. F. Combining evolutionary information and an iterative sampling strategy for accurate protein structure prediction. PLoS Comput. Biol. 11, e1004661 (2015).

  144. Evangelidis, T. et al. Automated NMR resonance assignments and structure determination using a minimal set of 4D spectra. Nat. Commun. 9, 384 (2018).

  145. Lange, O. F. Automatic NOESY assignment in CS-RASREC-Rosetta. J. Biomol. NMR 59, 147–159 (2014).

  146. Kuenze, G., Bonneau, R., Koehler Leman, J. & Meiler, J. Integrative protein modeling in RosettaNMR from sparse paramagnetic restraints. Structure 27, 1721–1734.e5 (2019).

  147. Aprahamian, M. L., Chea, E. E., Jones, L. M. & Lindert, S. Rosetta protein structure prediction from hydroxyl radical protein footprinting mass spectrometry data. Anal. Chem. 90, 7721–7729 (2018).

  148. Aprahamian, M. L. & Lindert, S. Utility of covalent labeling mass spectrometry data in protein structure prediction with Rosetta. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.9b00101 (2019).

  149. Hauri, S. et al. Rapid determination of quaternary protein structures in complex biological samples. Nat. Commun. 10, 192 (2019).

  150. Watkins, A. M. et al. Blind prediction of noncanonical RNA structure at atomic accuracy. Sci. Adv. 4, eaar5316 (2018).

  151. Sripakdeevong, P., Kladwang, W. & Das, R. An enumerative stepwise ansatz enables atomic-accuracy RNA loop modeling. Proc. Natl Acad. Sci. USA 108, 20573–20578 (2011).

  152. Das, R. Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz. PLoS One 8, e74830 (2013).

  153. Chou, F.-C., Sripakdeevong, P., Dibrov, S. M., Hermann, T. & Das, R. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10, 74–76 (2013).

  154. Chou, F.-C., Echols, N., Terwilliger, T. C. & Das, R. RNA structure refinement using the ERRASER-Phenix pipeline. in Nucleic Acid Crystallography 269–282 (Springer, 2016); https://doi.org/10.1007/978-1-4939-2763-0_17

  155. Kappel, K. & Das, R. Sampling native-like structures of RNA-protein complexes through Rosetta folding and docking. Structure 27, 140–151.e5 (2019).

  156. Kappel, K. et al. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat. Methods 15, 947–954 (2018).

  157. Thyme, S. B. et al. Exploitation of binding energy for catalysis and design. Nature 461, 1300–1304 (2009).

  158. Ashworth, J. et al. Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441, 656–659 (2006).

  159. Ashworth, J. et al. Computational reprogramming of homing endonuclease specificity at multiple adjacent base pairs. Nucleic Acids Res. 38, 5601–5608 (2010).

  160. Havranek, J. J. & Harbury, P. B. Automated design of specificity in molecular recognition. Nat. Struct. Biol. 10, 45–52 (2003).

  161. Thyme, S. B. et al. Reprogramming homing endonuclease specificity through computational design and directed evolution. Nucleic Acids Res. 42, 2564–2576 (2014).

  162. Thyme, S. B., Baker, D. & Bradley, P. Improved modeling of side-chain—base interactions and plasticity in protein—DNA interface design. J. Mol. Biol. 419, 255–274 (2012).

  163. Yanover, C. & Bradley, P. Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. 39, 4564–4576 (2011).

  164. Ashworth, J. & Baker, D. Assessment of the optimization of affinity and specificity at protein-DNA interfaces. Nucleic Acids Res. 37, e73 (2009).

  165. Thyme, S. B. et al. Massively parallel determination and modeling of endonuclease substrate specificity. Nucleic Acids Res. 42, 13839–13852 (2014).

  166. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

  167. Koehler Leman, J., Ulmschneider, M. B. & Gray, J. J. Computational modeling of membrane proteins. Proteins 83, 1–24 (2015).

  168. Yarov-Yarovoy, V., Schonbrun, J. & Baker, D. Multipass membrane protein structure prediction using Rosetta. Proteins 62, 1010–1025 (2006).

  169. Barth, P., Schonbrun, J. & Baker, D. Toward high-resolution prediction and design of transmembrane helical protein structures. Proc. Natl Acad. Sci. USA 104, 15682–15687 (2007).

  170. Alford, R. F. et al. An integrated framework advancing membrane protein modeling and design. PLoS Comput. Biol. 11, e1004398 (2015).

  171. Baugh, E. H., Lyskov, S., Weitzner, B. D. & Gray, J. J. Real-time PyMOL visualization for Rosetta and PyRosetta. PLoS One 6, e21931 (2011).

  172. Koehler Leman, J., Mueller, B. K. & Gray, J. J. Expanding the toolkit for membrane protein modeling in Rosetta. Bioinformatics 33, 754–756 (2017).

  173. Koehler Leman, J., Lyskov, S. & Bonneau, R. Computing structure-based lipid accessibility of membrane proteins with mp_lipid_acc in RosettaMP. BMC Bioinformatics 18, 115 (2017).

  174. Koehler Leman, J. & Bonneau, R. A novel domain assembly routine for creating full-length models of membrane proteins from known domain structures. Biochemistry https://doi.org/10.1021/acs.biochem.7b00995 (2017).

  175. Lai, J. K., Ambia, J., Wang, Y. & Barth, P. Enhancing structure prediction and design of soluble and membrane proteins with explicit solvent-protein interactions. Structure 25, 1758–1770.e8 (2017).

  176. Alford, R. F., Fleming, P. J., Fleming, K. G. & Gray, J. J. Protein structure prediction and design in a biologically realistic implicit membrane. Biophys. J. 118, 2042–2055 (2020).

  177. Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993).

  178. Varki, A. et al. Essentials of Glycobiology (Cold Spring Harbor Laboratory Press, 2009).

  179. Nivedha, A. K., Thieker, D. F., Makeneni, S., Hu, H. & Woods, R. J. Vina-Carb: improving glycosidic angles during carbohydrate docking. J. Chem. Theory Comput. 12, 892–901 (2016).

  180. Gray, J. J., Chaudhury, S., Lyskov, S. & Labonte, J. W. The PyRosetta interactive platform for protein structure prediction and design: a set of educational modules. (CreateSpace, 2014).

  181. Schenkelberg, C. D. & Bystroff, C. InteractiveROSETTA: a graphical user interface for the PyRosetta protein modeling suite. Bioinformatics 31, 4023–4025 (2015).

  182. Kleffner, R. et al. Foldit Standalone: a video game-derived protein structure manipulation interface using Rosetta. Bioinformatics 33, 2765–2767 (2017).

  183. Cooper, S., Sterling, A. L. R., Kleffner, R., Silversmith, W. M. & Siegel, J. B. Repurposing citizen science games as software tools for professional scientists. in Proc. 13th Int. Conf. Foundations of Digital Games – FDG ’18 https://doi.org/10.1145/3235765.3235770 (ACM Press, 2018).

  184. Lyskov, S. et al. Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS One 8, e63906 (2013).

  185. Moretti, R., Lyskov, S., Das, R., Meiler, J. & Gray, J. J. Web-accessible molecular modeling with Rosetta: the Rosetta Online Server that Includes Everyone (ROSIE). Protein Sci. 27, 259–268 (2018).

  186. Institute for Protein Design. Audacious Project. https://www.ipd.uw.edu/audacious/ (2019).

  187. Mulligan, V.K. et al. Designing peptides on a quantum computer. Preprint at bioRxiv https://doi.org/10.1101/752485 (2019).

  188. Gront, D., Kulp, D. W., Vernon, R. M., Strauss, C. E. M. & Baker, D. Generalized fragment picking in Rosetta: design, protocols and applications. PLoS One 6, e23294 (2011).

  189. Marcos, E. et al. De novo design of a non-local β-sheet protein with high stability and accuracy. Nat. Struct. Mol. Biol. 25, 1028–1034 (2018).

  190. DeLuca, S., Khar, K. & Meiler, J. Fully flexible docking of medium sized ligand libraries with RosettaLigand. PLoS One 10, e0132508 (2015).

  191. Davis, I. W. & Baker, D. RosettaLigand docking with full ligand and receptor flexibility. J. Mol. Biol. 385, 381–392 (2009).

  192. Gowthaman, R. et al. DARC: mapping surface topography by ray-casting for effective virtual screening at protein interaction sites. J. Med. Chem. 59, 4152–4170 (2016).

  193. Khar, K. R., Goldschmidt, L. & Karanicolas, J. Fast docking on graphics processing units via Ray-Casting. PLoS One 8, e70661 (2013).

  194. Gowthaman, R., Lyskov, S. & Karanicolas, J. DARC 2.0: improved docking and virtual screening at protein interaction sites. PLoS One 10, e0131612 (2015).

  195. Toor, J. S. et al. A recurrent mutation in anaplastic lymphoma kinase with distinct neoepitope conformations. Front. Immunol. 9, 99 (2018).

  196. Gowthaman, R. & Pierce, B. G. TCRmodel: high resolution modeling of T cell receptors from sequence. Nucleic Acids Res. 46 W1, W396–W401 (2018).

  197. Blacklock, K. M., Yang, L., Mulligan, V. K. & Khare, S. D. A computational method for the design of nested proteins by loop-directed domain insertion. Proteins 86, 354–369 (2018).

  198. Ollikainen, N., de Jong, R. M. & Kortemme, T. Coupling protein side-chain and backbone flexibility improves the re-design of protein-ligand specificity. PLoS Comput. Biol. 11, e1004335 (2015).

  199. Raveh, B., London, N., Zimmerman, L. & Schueler-Furman, O. Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One 6, e18934 (2011).

  200. Sedan, Y., Marcu, O., Lyskov, S. & Schueler-Furman, O. Peptiderive server: derive peptide inhibitors from protein-protein interactions. Nucleic Acids Res. 44 W1, W536–W541 (2016).

  201. Rubenstein, A. B., Pethe, M. A. & Khare, S. D. MFPred: rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory. PLoS Comput. Biol. 13, e1005614 (2017).

  202. Pacella, M. S. & Gray, J. J. A benchmarking study of peptide–biomineral interactions. Cryst. Growth Des. 18, 607–616 (2018).

  203. Wang, R. Y.-R. et al. De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat. Methods 12, 335–338 (2015).

  204. DiMaio, F. et al. Improved low-resolution crystallographic refinement with Phenix and Rosetta. Nat. Methods 10, 1102–1104 (2013).

  205. DiMaio, F. et al. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat. Methods 12, 361–365 (2015).

  206. Das, R., Karanicolas, J. & Baker, D. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat. Methods 7, 291–294 (2010).

  207. Cheng, C. Y., Chou, F.-C. & Das, R. Modeling complex RNA tertiary folds with Rosetta. Methods Enzymol. 553, 35–64 (2015).

  208. Sripakdeevong, P. et al. Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts. Nat. Methods 11, 413–416 (2014).

  209. Chou, F. C., Kladwang, W., Kappel, K. & Das, R. Blind tests of RNA nearest-neighbor energy prediction. Proc. Natl Acad. Sci. USA 113, 8430–8435 (2016).

  210. Ford, A. S., Weitzner, B. D. & Bahl, C. D. Integration of the Rosetta suite with the python software stack via reproducible packaging and core programming interfaces for distributed simulation. Protein Sci. 29, 43–51 (2020).

  211. Khatib, F. et al. Algorithm discovery by protein folding game players. Proc. Natl Acad. Sci. USA 108, 18949–18953 (2011).

  212. Hooper, W. F., Walcott, B. D., Wang, X. & Bystroff, C. Fast design of arbitrary length loops in proteins using InteractiveRosetta. BMC Bioinformatics 19, 337 (2018).