Trang web giải toán online nhận quà – Phần mềm hỗ trợ học tập, giảng dạy – Các trang web hay

Giải hộ cái

Two six-sided dice each have the numbers 1 through 6 on their faces. Neither die is fair, but they are both weighted the same. The probability of rolling a certain number on one die is given in the table below:
$\begin{array}{c|cccccc} \mbox{number} & 1 & 2 & 3 & 4 & 5 & 6\\ \hline \mbox{probability} & \frac{1}{6} & \frac{1}{6} & \frac{1}{9} & ? & \frac{2}{9} & ?\\ \end{array}$
If the probability that the two dice both show the same numbers is $\left(\frac{2}{3}\right)^4,$ we can express the probability of rolling 10 on these two dice as \frac{a}{b}where aand bare coprime positive integers. What is the value of a + b?

[font=times new roman,times,serif]Sự im lặng du dương hơn bất kỳ bản nhạc nào.[/font]