Hệ thức Vi-et và ứng dụng – Toán lớp 9
Mục lục bài viết
Hệ thức Vi-et và ứng dụng – Toán lớp 9
Hệ thức Vi-et và ứng dụng
A. Phương pháp giải
Quảng cáo
Xem thêm: Phương pháp giải 5 dạng bài Hệ thức vi-et và ứng dụng để giải phương trình bậc hai một ẩn
B. Bài tập tự luận
Bài 1: Cho phương trình x2 – 3x + 1 = 0
Gọi x1, x2 là các nghiệm của phương trình, không giải phương trình tìm giá trị của các biểu thức sau:
Hướng dẫn giải:
Có Δ = (-3)2 – 4.1 = 9 – 4 = 5 > 0 ⇒ phương trình có 2 nghiệm x1, x2 ≠ 0
Quảng cáo
Xem thêm:
Bài 2: Cho phương trình: x2 + (2m -1)x – m = 0.
a) Chứng minh phương trình luôn có nghiệm với mọi m.
b) Gọi x1, x2 là 2 nghiệm của phương trình đã cho. Tìm giá trị của m để biểu thức A= x12 + x22 – x1.x2 có giá trị nhỏ nhất
Hướng dẫn giải:
Bài 3: Cho phương trình x2 + 2x + k = 0. Tìm giá trị của k để phương trình có hai nghiệm x1, x2 thỏa mãn 1 trong các điều kiện sau:
a) x1 – x2 = 14
b) x1 = 2×2
c) x12 + x22 = 1
d) 1/x1 + 1/x2 = 2
Quảng cáo
Hướng dẫn giải:
Bài 4: Cho phương trình bậc hai x2 – 2(m+1)x + m – 4 = 0
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m.
b) Tìm m để phương trình luôn có hai nghiệm trái dấu.
c) Không giải phương trình hãy tìm một biểu thức liên hệ giữa hai nghiệm không phụ thuộc vào m.
Hướng dẫn giải:
Quảng cáo
a) Phương trình có hai nghiệm phân biệt với mọi m ⇔ Δ > 0 với mọi m
Có Δ’ = (m +1)2 – (m-4) = m2 + m + 5 = (m + 1/2)2 + 19/4 > 0 với mọi m
Nên phương trình luôn có hai nghiệm phân biệt
b, Phương trình có hai nghiệm trái dấu khi và chỉ khi ac < 0 ⇔ m – 4 < 0 ⇔ m < 4
Vậy với m < 4 thì phương trình có 2 nghiệm trái dấu.
Bài 5: Phương trình
có hai nghiệm phân biệt x1; x2. Giá trị của biểu thức x12x2 + x1x22 bằng:
Hướng dẫn giải:
Đáp án A
Bài 6: Gọi S và P lần lượt là tổng và tích hai nghiệm của phương trình x2 – 2x – 3 = 0. Giá trị của biểu thức S2 + 2P là:
Hướng dẫn giải:
Đáp án B
Bài 7: Cho phương trình x2 – (m2 + 1)x + 3m2 – 8 = 0 (với m là tham số). Tất cả các giá trị của m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn x1 = 4×2 là:
Hướng dẫn giải:
Đáp án C
Bài 8: Phương trình nào sau đây có nghiệm bằng nghịch đảo các nghiệm của phương trình x2 + mx – 2 = 0?
Hướng dẫn giải:
Đáp án B
Bài 9: Cho phương trình x2 – 2x – m2 = 0 có hai nghiệm x1 và x2. Phương trình bậc hai một ẩn có hai nghiệm là y1 = 2×1 – 1 và y2 = 2×2 – 1 là:
Hướng dẫn giải:
Đáp án D
Bài 10: Cho phương trình bậc hai ẩn x , tham số m: mx2 – (2m + 3)x + m – 4 = 0. Với các giá trị của m để phương trình có hai nghiệm x1, x2, biểu thức liên hệ giữa hai nghiệm không phụ thuộc vào m là:
Hướng dẫn giải:
Đáp án C
Tham khảo thêm các Chuyên đề Toán lớp 9 khác:
Mục lục các Chuyên đề Toán lớp 9:
Mã giảm giá Shopee mới nhất Mã code
Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng….miễn phí. Tải ngay ứng dụng trên Android và iOS.
Nhóm học tập facebook miễn phí cho teen 2k7: fb.com/groups/hoctap2k7/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.