(PDF) notes-Digital Communication Lecture-1.ppt – DOKUMEN.TIPS
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
1/63
Digital CommunicationLecture-1, Prof. Dr.
Habibullah JamalUnder Graduate, Spring 2008
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
2/63
Text: Digital Communications: Fundamentals and
Applications, By “Bernard Sklar”, PrenticeHall, 2nd
ed, 2001. Probability and andom !ignals “or
#lectrical #ngineers, $eon %arciaReferences:
Digital Communications, Fourt& #dition, ‘.%. Proa(is,
)c%ra* Hill, 2000.Course Books
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
3/63
Course Outline Review of Probability
Signal and Spectra (Chapter ! “or#atting and $a%e band
&odulation (Chapter 2! $a%e band ‘e#odulation’etection (Chapter
)! Channel Coding (Chapter *, + and 8! $and pa%% &odulation and
‘e#od’etect(Chapter -! Spread Spectru# .echni/ue% (Chapter 2!
Synchroniation (Chapter 0! Source Coding (Chapter )! “ading
Channel% (Chapter 1! -
8/20/2019 notes-Digital Communication Lecture-1.ppt
4/63
Toda!s “oal
Review of $a%ic Probability
‘igital Co##unication $a%ic
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
5/63
Communication
&ain purpo%e of co##unication i% to tran%fer infor#ation
fro# a %ource to a recipient via a channel or #ediu#
$a%ic bloc diagra# of a co##unication %y%te#3
Source Transmitter Receiver
Recipient
Channel
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
6/63
Brief Descri#tion
Source: analog or digital
Transmitter: tran%ducer, a#plifier, #odulator, o%cillator,
powera#p, antenna
Channel: eg cable, optical fibre, free %pace
Receiver: antenna, a#plifier, de#odulator, o%cillator,
powera#plifier, tran%ducerRecipient: eg per%on, (loud! %peaer, co#puter
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
7/63
Types of information
4oice, data, video, #u%ic, e#ail etc
Types of communication systems
Public Switched .elephone 5etwor (voice,fa6,#ode#!
Satellite %y%te#%
Radio,.4 broadca%ting
Cellular phone%
Co#puter networ% (75%, 95%, 975%!
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
8/63
$nformation %e#resentation
Co##unication %y%te# convert% infor#ation into
electricalelectro#agneticoptical %ignal% appropriate for the
tran%#i%%ion#ediu#nalog %y%te#% convert analog #e%%age into %ignal% that
canpropagate through the channel‘igital %y%te#% convert bit%(digit%, %y#bol%! into %ignal%
Co#puter% naturally generate infor#ation a% character%bit%
&o%t infor#ation can be converted into bit% nalog %ignal%
converted to bit% by %a#pling and /uantiing(‘ conver%ion!
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
9/63
&h digital’
‘igital techni/ue% need to di%tingui%h between di%crete
%y#bol%allowing regeneration ver%u% a#plificationGood proce%%ing techni/ue% are available for digital %ignal%,
%ucha% #ediu#‘ata co#pre%%ion (or %ource coding! :rror Correction (or channel
coding!(‘ conver%ion! :/ualiation Security:a%y to #i6 %ignal% and data u%ing digital techni/ue%
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
10/63
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
11/63
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
12/63
$a%ic ‘igital Co##unication .ran%for#ation% “or#attingSource
Coding .ran%for#% %ource info into digital %y#bol% (digitiation!
Select% co#patible wavefor#% (#atching function! ;ntroduce%
redundancy which facilitate% accurate decodingde%pite error%
It is essential for reliable communication
&odulation’e#odulation &odulation i% the proce%% of
#odifying the info %ignal tofacilitate tran%#i%%ion ‘e#odulation rever%e% the proce%% of
#odulation ;tinvolve% the detection and retrieval of the info %ignal .ype%
Coherent3 Re/uire% a reference info for detection 5oncoherent3 ‘oe%
not re/uire reference pha%e infor#ation -
8/20/2019 notes-Digital Communication Lecture-1.ppt
13/63
Basic Digital Communication
Transformations Coding’ecoding
.ran%lating info bit% to tran%#itter data %y#bol%
.echni/ue% u%ed to enhance info %ignal %o that they arele%%
vulnerable to channel i#pair#ent (eg noi%e, fading, -
8/20/2019 notes-Digital Communication Lecture-1.ppt
14/63
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
15/63
Performance (etrics
nalog Co##unication Sy%te#% &etric i% fidelity3 want
S5R typically u%ed a% perfor#ance #etric‘igital Co##unication Sy%te#% &etric% are data rate (R bp%!
and probability of bit errorSy#bol% already nown at the receiver
9ithout noi%edi%tortion%ync proble#, we will never
#ae bit error%
ˆ ( ) ( )m t m t ≈
( )ˆ( )b P p b b= ≠
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
16/63
(ain Points
.ran%#itter% #odulate analog #e%%age% or bit% in ca%e of a
‘CSfor tran%#i%%ion over a channelReceiver% recreate %ignal% or bit% fro# received %ignal
(#itigatechannel effect%!
Perfor#ance #etric for analog %y%te#% i% fidelity, for digital
it i%the bit rate and error probability
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
17/63
&h Digital Communications’ :a%y to regenerate the
di%torted %ignal Regenerative repeater% along the tran%#i%%ion path
candetect a digital %ignal and retran%#it a new, clean (noi%efree!
%ignal.he%e repeater% prevent accu#ulation of noi%e along thepath
.hi% i% not po%%ible with analog co##unication%y%te#% .wo=%tate
%ignal repre%entation.he input to a digital %y%te# i% in the for# of a%e/uence of
bit% (binary or &>ary! ;##unity to di%tortion and
interference ‘igital co##unication i% rugged in the %en%e that it
i% #orei##une to channel noi%e and di%tortion
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
18/63
&h Digital Communications’ ?ardware i% #ore
fle6ible‘igital hardware i#ple#entation i% fle6ible and per#it%the u%e
of #icroproce%%or%, #ini=proce%%or%, digital%witching and 47S;Shorter de%ign and production cycle
7ow co%t .he u%e of 7S; and 47S; in the de%ign of co#ponent%
and %y%te#% have re%ulted in lower co%t :a%ier and #ore
efficient to #ultiple6 %everal digital%ignal% ‘igital #ultiple6ing techni/ue% @ .i#e A Code
‘ivi%ion&ultiple cce%% = are ea%ier to i#ple#ent than
analogtechni/ue% %uch a% “re/uency ‘ivi%ion &ultiple cce%% -
8/20/2019 notes-Digital Communication Lecture-1.ppt
19/63
&h Digital Communications’ Can co#bine different
%ignal type% @ data, voice, te6t, etc‘ata co##unication in co#puter% i% digital in naturewherea%
voice co##unication between people i% analog innature.he two type% of co##unication are difficult to co#bine overthe
%a#e #ediu# in the analog do#ainU%ing digital techni/ue%, it i% po%%ible to co#bineboth for#at
for tran%#i%%ion through a co##on#ediu#:ncryption and privacy techni/ue% are ea%ier toi#ple#ent
$etter overall perfor#ance ‘igital co##unication i% inherently
#ore efficient thananalog in realiing the e6change of S5R for
bandwidth‘igital %ignal% can be coded to yield e6tre#ely low rate%
andhigh fidelity a% well a% privacy -
8/20/2019 notes-Digital Communication Lecture-1.ppt
20/63
&h Digital Communications’
‘i%advantage%
Re/uire% reliable B%ynchroniation
Re/uire% ‘ conver%ion% at high rate
Re/uire% larger bandwidth
5ongraceful degradation
Perfor#ance Criteria
Probability of error or $it :rror Rate
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
21/63
Goals in Communication SystemDesign
.o #a6i#ie tran%#i%%ion rate,R
.o #a6i#ie %y%te# utiliation, U
.o #ini#ie bit error rate, P e
.o #ini#ie re/uired %y%te#% bandwidth, W
.o #ini#ie %y%te# co#ple6ity, C x
.o #ini#ie re/uired power, E b /N o
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
22/63
Comparative Analysis of Analog and
Digital Communication
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
23/63
Digital Signal Nomenclature
Information Source ‘i%crete output value% eg Deyboard
nalog %ignal %ource eg output of a #icrophone
Character &e#ber of an alphanu#eric%y#bol ( to E, 0 to
F!Character% can be #apped into a %e/uence of binary digit%
u%ing one of the %tandardied code% %uch a% ASCII: American
Standard Code for Information InterchangeEBCDIC: Etended Binary Coded Decimal Interchange Code
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
24/63
Digital Signal Nomenclature
Digital !essage &e%%age% con%tructed fro# a finite nu#ber of
%y#bol% eg, printedlanguage con%i%t% of 2* letter%, 0 nu#ber%, B%pace and
%everalpunctuation #ar% ?ence a te6t i% a digital #e%%age con%tructed
fro#about 10 %y#bol%
&or%e=coded telegraph #e%%age i% a digital #e%%age
con%tructed fro#two %y#bol% B!ar” and BSpace
! # ary digital #e%%age con%tructed with M %y#bol%
Digital $aveform Current or voltage wavefor# that repre%ent% a
digital %y#bolBit Rate ctual rate at which infor#ation i% tran%#itted
per %econd -
8/20/2019 notes-Digital Communication Lecture-1.ppt
25/63
Digital Signal Nomenclature
Baud Rate
Refer% to the rate at which the %ignaling ele#ent% are
tran%#itted, ie nu#ber of %ignaling ele#ent% per
%econd
Bit Error Rate
.he probability that one of the bit% i% in error or %i#ply
the probability of error
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
26/63
1.2 Classification Of Signals1. Deterministic and %andom
)ignals%ignal i% deterministic #ean% that there i% no
uncertainty withre%pect to it% value at any ti#e
‘eter#ini%tic wavefor#% are #odeled by e6plicit #athe#atical
e6pre%%ion%, e6a#ple3
%ignal i% random #ean% that there i% %o#e degree
ofuncertainty before the %ignal actually occur%
Rando# wavefor#% Rando# proce%%e% when e6a#ined over a
long period #ay e6hibit certain regularitie% that can be
de%cribedin ter#% of probabilitie% and %tati%tical average%
x(t) = Cos(!”t)
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
27/63
*. Periodic and +on-#eriodic )ignals
%ignal 6(t ! i% called periodic in time if
there e6i%t% a con%tantT 0 H 0 %uch that
(2!
t denote% ti#e
T 0 i% the period
of x (t !.“x(t) = x(t # T ) for $ % t %∞ ∞
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
28/63
. nalog and Discrete )ignals
n analog signal x (t ! i% a continuou% function
of ti#e that i%, x (t !i% uni/uely defined for all t
discrete signal x (kT ! i% one that e6i%t% only
at di%crete ti#e% iti% characteried by a %e/uence of nu#ber% defined for eachti#e,
kT, wherek i% an integer
T i% a fi6ed ti#e interval
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
29/63
. /nerg and Po0er )ignals
.he perfor#ance of a co##unication %y%te# depend% on thereceived
%ignal energ! higher energy %ignal% are detected #orereliably (with
fewer error%! than are lower energy %ignal%x (t ! i% cla%%ified a% an energ signal if, and
only if, it ha% nonerobut finite energy (0 I ” x I J! for all
ti#e, where3(+!
n energy %ignal ha% finite energy but #ero average
po$er.Signal% that are both deter#ini%tic and non=periodic
arecla%%ified a% energy %ignal%T&’
‘ ‘
xT & ‘
= x (t) dt = x (t) dtlimT
∞
→∞ − −∞∫ ∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
30/63
%o$er i% the rate at which energy i% delivered
%ignal i% defined a% a power %ignal if, and only if, it
ha% finitebut nonero power (0 I % x I J! for all
ti#e, where(8!
Power %ignal ha% finite average power but infinite energ.
% a general rule, periodic %ignal% and rando# %ignal%
arecla%%ified a% power %ignal%
. /nerg and Po0er )ignals
T&’
‘
xT & ‘
! = x (t) dt
Tlim
T →∞ −∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
31/63
&irac delta function ‘ (t ! or i#pul%e function i%
an ab%tractionKaninfinitely large a#plitude pul%e, with ero pul%e width, and
unityweight (area under the pul%e!, concentrated at the point where
it%argu#ent i% ero
(F!
(0!
(!
Sifting or Sa#pling Property
(2!
. The 2nit $m#ulse 3unction
(t) dt = !
(t) = ” for t “
(t) is *ounded at t “
δ
δ
δ
∞
−∞
≠=
∫
” “( ) (t$t )dt = x(t ) x t δ ∞
−∞∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
32/63
1.3 Spectral Density
.he spectral densit of a %ignal characterie% the di%tribution
ofthe %ignalL% energy or power in the fre/uency do#ain
.hi% concept i% particularly i#portant when con%idering
filtering inco##unication %y%te#% while evaluating the %ignal and noi%e
atthe filter output.he energy %pectral den%ity (:S’! or the power %pectral
den%ity(PS’! i% u%ed in the evaluation
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
33/63
1. /nerg )#ectral Densit 4/)D5
:nergy %pectral den%ity de%cribe% the %ignal energy per unit
bandwidth #ea%ured in
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
34/63
*. Po0er )#ectral Densit 4P)D5
.he po$er spectral densit (PS’! function (6(f ! of the
periodic%ignal x (t ! i% a real, even, and nonnegative
function of fre/uencythat give% the di%tribution of the power
of x (t ! in the fre/uencydo#ain
PS’ i% repre%ented a%3
(8!
9herea% the average power of a periodic %ignal 6(t! i%
repre%ented a%3
(+!
U%ing PS’, the average nor#alied power of a real=valued%ignal i%
repre%ented a%3(F!
‘x n “
n=$
– (f ) = +C + ( ) f nf δ ∞
∞
−
∑”
“
&’
‘ ‘
x nn=$” & ‘
! x (t) dt +C +
T
T T
∞
∞−
= = ∑∫
x x x
“
– (f) df ‘ – (f) df ∞ ∞
−∞
= =∫ ∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
35/63
1.4 Autocorrelation1. utocorrelation of an /nerg )ignal
Correlation i% a #atching proce%% autocorrelation refer% to
the#atching of a %ignal with a delayed ver%ion of it%elf
utocorrelation function of a real=valued energy
%ignal x (t ! i%defined a%3
(2!
.he autocorrelation function R6(.! provide% a #ea%ure of how
clo%ely the %ignal #atche% a copy of it%elf a% the copy i%
%hifted. unit% in ti#eR6(.! i% not a function of ti#e it i% only a function of the
ti#edifference . between the wavefor# and it% %hifted copy
xR ( ) = x(t) x (t # ) dt for $ % %τ τ τ ∞
−∞
∞ ∞∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
36/63
1. utocorrelation of an /nerg )ignal
.he autocorrelation function of a real=valued energ %ignal
ha%the following propertie%3
%y##etrical in about ero
#a6i#u# value occur% at the origin
autocorrelation and :S’ for# a
“ourier tran%for# pair, a% de%ignated
by the double=headed arrow%
value at the origin i% e/ual to
the energy of the %ignal
x xR ( ) =R ($ )τ τ
x xR ( ) R (“) for allτ τ ≤
x xR ( ) (f)τ ψ ↔
‘
xR (“) x (t) dt
∞
−∞
= ∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
37/63
*. utocorrelation of a Po0er )ignal
utocorrelation function of a real=valued power
%ignal x (t ! i%defined a%3
(22!
9hen the power %ignal x (t ! i% periodic with
period T 0, theautocorrelation function can be e6pre%%ed a%
(2)!
& ‘
xT & ‘
!R ( ) x(t) x (t # ) dt for $ % %lim
T
T T
τ τ τ →∞ −
= ∞ ∞∫
“
“
& ‘
x
” & ‘
!R ( ) x(t) x (t # ) dt for $ % %
T
T T
τ τ τ −
= ∞ ∞∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
38/63
*. utocorrelation of a Po0er )ignal
.he autocorrelation function of a real=valued periodic
%ignal ha%the following propertie% %i#ilar to tho%e of an energy
%ignal3%y##etrical in about ero
#a6i#u# value occur% at the origin
autocorrelation and PS’ for# a
“ourier tran%for# pair
value at the origin i% e/ual to theaverage power of the
%ignalx xR ( ) =R ($ )τ τ
x xR ( ) R (“) for allτ τ ≤
x xR ( ) (f)Gτ ↔
“
“
T & ‘
‘x
” T & ‘
!R (“) x (t)dtT −
= ∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
39/63
1.5 Random Signals1. %andom 6ariables
ll u%eful #e%%age %ignal% appear rando# that i%, the
receiverdoe% not now, a priori, which of the po%%ible wavefor# have
been%ent7et a random variable ) ( *! repre%ent the functional
relation%hipbetween a rando# event * and a real nu#ber
.he +cumulative distribution function
– ) ( x ! of the rando# variable )
i% given by(2-!
nother u%eful function relating to the rando#
variable ) i% the probabilit densit function (pdf!(21!
( ) ( ) X F x P X x= ≤
( )
( ) X
X
dF x
P x dx=
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
40/63
1.1 /nsemble 7erages
Te first moment of a
probabilit distribution of arandom variable ) is
calledmean value m ) , or expectedvalue of a rando#
variable )Te second moment of a probabilit distribution is
temean/square value of )Central moments are the#o#ent% of the
differencebetween ) and m ) and the%econd
central #o#ent i% thevariance of ) 4ariance i% e/ual to the
difference between the #ean=%/uare value and the %/uare ofthe
#ean/ 0 ( ) X X m E X x p x dx
∞
−∞= = ∫ ‘ ‘/ 0 ( ) X E X x p x dx
∞
−∞
= ∫
‘
‘
var( ) /( ) 0
( ) ( )
X
X X
X E X m
x m p x dx
∞
−∞
= −
= −∫
‘ ‘var( ) / 0 / 0 X E X E X = −
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
41/63
2. Random Processes
rando# proce%% ) ( *, t ! can be
viewed a% a function of twovariable%3 an event * and time.
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
42/63
1.5.2.1 Statistical Averages of aRandom Process rando#
proce%% who%e di%tribution function% are continuou% canbe de%cribed %tati%tically with a probability den%ity function
(pdf!partial de%cription con%i%ting of the #ean and
autocorrelationfunction are often ade/uate for the need% of co##unication
%y%te#%
&ean of the rando# proce%% ) (t ! 3
()0!
utocorrelation function of the rando#
proce%% ) (t !()!/ ( )0 ( ) ( )k k X X k
E X t xp x dx m t
∞
−∞
= =∫
! ‘ ! ‘( 1 ) / ( ) ( )0 X R t t E X t X
t = -
8/20/2019 notes-Digital Communication Lecture-1.ppt
43/63
1.5.5. Noise in CommunicationSystems
.he ter# noise refer% to un$anted electrical %ignal% that
arealway% pre%ent in electrical %y%te#% eg %par=plug ignitionnoi%e,
%witching tran%ient%, and other radiating
electro#agnetic%ignal%Can de%cribe ther#al noi%e a% a ero=#ean (aussian
rando#proce%%Gau%%ian proce%% n(t ! i% a rando# function who%e
a#plitude atany arbitrary ti#e t i% %tati%tically characteried
by the Gau%%ianprobability den%ity function
(-0!
‘! !( ) exp
”
n p n
σ σ π
= − ÷
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
44/63
Noise in Communication Systems
.he normali#ed or standardi#ed (aussian densit function of a
ero=#ean proce%% i% obtained by a%%u#ing unit variance
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
45/63
1.5.5.1 White Noise
.he pri#ary %pectral characteri%tic of ther#al noi%e i% that
it%power %pectral den%ity i% te same for all fre/uencie% of
intere%tin #o%t co##unication %y%te#%Power %pectral den%ity (n(f !
(-2!
utocorrelation function of white noi%e i%
(-)!
.he average power % n of white noi%e i% infinite
(–!
“( ) &
‘n
N G f watts hertz =
! “( ) / ( )0 ( )’
n n
N R G f τ δ τ −= ℑ =
“( )’
N p n df
∞
−∞
= = ∞∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
46/63
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
47/63
.he effect on the detection proce%% of a channel with
additive$ite (aussian noise (9G5! i% that the noi%e affect%
eachtran%#itted %y#bol independentl.
Such a channel i% called a memorless cannel.
.he ter# Badditive #ean% that the noi%e i% %i#ply
%uperi#po%edor added to the %ignal
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
48/63
1.6 Signal ransmission t!roug!
“inear Systems
%y%te# can be characteried e/ually well in the ti#e
do#ainor the fre/uency do#ain, techni/ue% will be developed in
bothdo#ain%
.he %y%te# i% a%%u#ed to be linear and ti#e invariant
;t i% al%o a%%u#ed that there i% no %tored energy in the
%y%te#at the ti#e the input i% applied
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
49/63
1.6.1. Impulse Response
.he linear ti#e invariant %y%te# or networ i% characteried in
theti#e do#ain by an i#pul%e re%pon%e (t !,to an input unit
i#pul%eδ(t(-1!
.he re%pon%e of the networ to an arbitrary input %ignal x
(t !i%found by the convolution of x (t !with (t !(-*!
.he %y%te# i% a%%u#ed to be causal,which #ean% that there canbe
no output prior to the ti#e, t N0,when the input i% applied.he convolution integral can be e6pre%%ed a%3
(-+a!
( ) ( ) ( ) ( ) y t h t when x t t δ = =
( ) ( ) ( ) ( ) ( ) y t x t h t x h t d τ τ
τ∞
−∞= ∗ = −∫
“
( ) ( ) ( ) y t x h t d τ τ τ
∞
= −∫
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
50/63
1.6.2. Freuency !rans”er Function
.he fre/uency=do#ain output %ignal 0 (f !i% obtained by taingthe
“ourier tran%for#(-8!
-requenc transfer function or the frequenc response i%
defineda%3(-F!
(10!
.he pha%e re%pon%e i% defined a%3
(1!
( ) ( ) ( )Y f X f H f =
( )
( )( )
( )
( ) ( ) j f
Y f H f
X f
H f H f e θ
=
=
! 2m/ ( )0( ) tanRe/ ( )0
H f f
H f θ −=
d d
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
51/63
1.6.2.1. Random Processes and#inear Systems
;f a rando# proce%% for#% the input to a ti#e=
invariant linear %y%te#,the output will al%o be a
rando# proce%%
.he input power %pectral den%ity ( ) (f !and
theoutput power %pectral den%ity ( (f !are related
a%3
(1)!
‘( ) ( ) ( )Y X G f G f H f =
1 6 $ i i l i i
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
52/63
1.6.$. Distortionless !ransmissionWhat is the required behavior
of an idealtransmission line?.he output %ignal fro# an ideal tran%#i%%ion line #ay have
%o#eti#e delay and different a#plitude than the input;t #u%t have no di%tortionKit #u%t have the %a#e %hape a%
theinput“or ideal di%tortionle%% tran%#i%%ion3
(1-!
(11!
(1*!
Output %ignal in ti#e do#ain
Output %ignal in fre/uency do#ain
Sy%te# .ran%fer “unction
“( ) ( ) y t Kx t t = −
“
‘
( ) ( ) j ft
Y f KX f e π −
=
“‘( ) j ft
H f Ke π −=
Wh t i th i d b h i f id l
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
53/63
What is the required behavior of an idealtransmission line? .he
overall %y%te# re%pon%e #u%t have a con%tant #agnitudere%pon%e .he pha%e %hift #u%t be linear with fre/uency ll
of the %ignalL% fre/uency co#ponent% #u%t al%o arrive withidentical ti#e delay in order to add up correctly .i#e delay
t 0 i% related to the pha%e %hift θ and the
radianfre/uency ω N 2πf by3 t 0 (%econd%! N
θ (radian%! 2πf +radians1seconds (1+a!nother characteri%tic often u%ed to #ea%ure delay
di%tortion of a%ignal i% called envelope dela or group dela2(1+b!! ( )( )
‘
d f f
df
θ τ
π = −
1 6 $ 1 Id l Fil
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
54/63
1.6.$.1. Ideal Filters
“or the ideal low=pa%% filter tran%fer function with
bandwidth W f Nf u hert can be written a%3
“igure (b! ;deal low=pa%% filter
%&'()*
$here
%&'(+*
%&’,-*
( )( ) ( ) j f H f H f e
θ −=! + +( )
” + +
u
u
for f f H f
for f f
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
55/63
.he i#pul%e re%pon%e of the ideal low=pa%% filter 3
“
“
!
‘
‘ ‘
‘ ( )
“
“
“
( ) / ( )0
( )
sin ‘ ( )’
‘ ( )
‘ sin ‘ ( )
u
u
u
u
j ft
f
j ft j ft
f
f
j f t t
f
uu
u
u u
h t H f
H f e df
e e df
e df
f t t f
f t t
f n f t t
π
π π
π
π
π
−
∞
−∞
−
−
−
−
= ℑ
=
=
=
−=−
= −
∫
∫
∫
Id l Filt
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
56/63
Ideal Filters
“or the ideal band=pa%% filter
tran%fer function
“or the ideal high=pa%% filter
tran%fer function
“igure (a! ;deal band=pa%% filter “igure (c! ;deal
high=pa%% filter1 6 $ 2 R li &l Filt
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
57/63
1.6.$.2. Reali%a&le Filters
.he %i#ple%t e6a#ple of a realiable low=pa%% filter an RC
filter*)!
.igure &’&/
( )
‘! !( )
! ‘ ! (‘ )
j f H f e j
f fθ
π π −= =+ ℜ + ℜ£ £
R li &l Filt
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
58/63
Reali%a&le Filters
Phase characteristic of RC filter
“igure )
R li bl Filt
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
59/63
Realizable Filters
.here are %everal u%eful appro6i#ation% to the ideal
low=pa%%filter characteri%tic and one of the%e i% the 3utter$ort
filter(*1!
Butterworth ltersare popular because
they are the bestapproximation to the
ideal, in the sense ofmaximal fatness inthe lter passband.
‘
!( ) !
! ( & )n
n
u
H f n f f
= ≥+
1 ‘ ( d idt* +” Di it l D t
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
60/63
n easy way to translate thespectrum of a low!pass or
basebandsi”nal x#t$ to a hi”her frequency isto multiply or
heterodyne thebaseband si”nal with a carrier wavecos
%πf ctxc#t$ is called a double!sideband
#&’B$ modulated si”nal
xc#t$ ( x#t$ cos %πf ct #).*+$
rom the frequency shiftin”theorem
-c#f$ ( )% /-#f!f c$ 0 -#f0f c$
1 #).*)$2enerally the carrier wavefrequency is much hi”her than
thebandwidth of the baseband si”nalf c 33 f m and therefore W&’B (
%f m1.’. (and)idt* +” Digital Data 1.’.1 Baseband versus
Bandass1 ‘ 2 (and idt* Dilemma
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
61/63
.heore#% ofco##unication and
infor#ation theory are
ba%ed on the
a%%u#ption of strictl
bandlimited channel%
.he #athe#atical
de%cription of a real
%ignal doe% not per#it
the %ignal to be %trictlyduration li#ited and
%trictly bandli#ited
1.’.2 (and)idt* Dilemma
1 ‘ 2 (and)idt* Dilemma
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
62/63
1.’.2 (and)idt* Dilemma
ll bandwidth criteria have in co##on the atte#pt to
%pecify a#ea%ure of the width, W, of a nonnegative real=valued
%pectralden%ity defined for all fre/uencie% f I J
.he %ingle=%ided power %pectral den%ity for a %ingle
heterodynedpul%e x c (t ! tae% the analytical for#3
#).*4$
‘
sin ( )( )
( )
x
f f T G f T
f f T
π
π
−= −
!i”erent Band#idth Criteria
-
8/20/2019 notes-Digital Communication Lecture-1.ppt
63/63
!i”erent Band#idth Criteria
(a! ?alf=power bandwidth
(b! :/uivalent rectangularor noi%e e/uivalentbandwidth
(c! 5ull=to=null bandwidth
(d! “ractional powercontain#entbandwidth
(e! $ounded power%pectral den%ity
(f! b%olute bandwidth